
CHAPTER 6

Time-Dependent Statistical Mechanics

6.1. More on the Langevin Equation

We now turn to the statistical mechanics of systems not in equi-
librium. The first few sections are devoted to special cases, which will
be used to build up experience with the questions one can reasonably
ask and the kinds of answers one may expect. A general formalism will
follow, with applications.

Consider first the Langevin equation, first discussed in Chapter 3,
which we now write as

du = −au dt +
√

2D dw, (6.1)

where w is a Brownian motion as before. A constant factor
√

2D has
been added in front of the noise. We want equation (6.1) to model
the dynamics of a heavy particle bombarded by light particles, and
the intensity of the bombardment should increase as the energy of
the bombarding particles increases, that is, proportionally to D. This
equation will now be fully solved.

After multiplication of equation (6.1) by eat we get

d(ueat) =
√

2Deat dw. (6.2)

Integrating both sides from 0 to t gives∫ t

0

d(ueas) =
√

2D

∫ t

0

eas dw.

Let u(0) = b. Then

u(t)eat − b =
√

2D

∫ t

0

eas dw.

After multiplying both sides by e−at we obtain

u(t)− be−at =
√

2D

∫ t

0

ea(s−t)dw.

108
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The last integral may be rewritten in the form:∫ t

0

ea(s−t)dw = lim
∆→0

n−1∑
j=0

ea(j∆−t)(w((j + 1)∆)− w(j∆)).

(where one does not have to worry about the Ito/Stratonovich di-
chotomy because the coefficient is a constant and the two formalisms
are equivalent). The summands of the last sum are independent Gauss-
ian variables with mean zero. The variance of the sum is the sum of
variances of its summands, i.e.,

Var

(
n−1∑
j=0

ea(j∆−t)(w((j + 1)∆)− w(j∆))

)
=

n−1∑
j=0

∆e2a(j∆−t)

and taking the limit ∆→ 0 we find

Var

(∫ t

0

ea(s−t)dw

)
=

∫ t

0

e2a(s−t)ds =
1

2a
− 1

2a
e−2at.

As t → ∞ this variance tends to 1/(2a). Also, as t → ∞, be−at tends
to 0. Therefore, the solution u(t) of the Langevin equation (6.1) tends
to a Gaussian variable with mean 0 and variance D/a.

If the particle we are observing has mass m its energy is 1
2mu2.

According to what we found in Chapter 5, the probability that the
particle has velocity u is proportional to exp(−mu2/2T ). Thus, we
must have

a =
D

Tm
.

The coefficient a is a friction coefficient, the relation between the fric-
tion and the temperature is an instance of a “fluctuation/dissipation
theorem”; it is a consequence of the requirement that the system tend
to equilibrium for long times, and relates the rate of dissipation of
energy to the amplitude T of the “thermal fluctuations.”

Note that we have not provided an explanation of the conditions for
the validity of our modeling of the motion of a heavy particle under the
influence of many others, in particular for the validity of the modeling
of the interactions as white noise. This looks plausible, but should be
discussed further.

The discussion of the fluctuation/dissipation theorem can be also
presented in terms of the Fokker-Planck equation associated with the
problem. We do that in a slightly more general case. Consider a particle
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of mass m subjected to noise, with the following equations of motion

q̇ = −∂H

∂p
,

ṗ =
∂H

∂q
− a

∂H

∂q
+
√

2D dw(t),

where H = p2/2m + Kq2/2 is the Hamiltonian (making the system a
harmonic oscillator), a and D are constants as in the preceding sec-
tion, and w(t) is BM. Substitution of the specific Hamiltonian into this
equation yields

q̇ =
p

m
, (6.3)

ṗ = −qK − a
p

m
+
√

2D dw. (6.4)

Note that we still have offered no physical motivation for the use of
white noise. The presence of an extra term in addition to the usual
derivatives of H and to the noise is motivated by the discussion in the
previous section, where a dissipation term appeared, and will be fully
explained by the result below.

A slight generalization of the argument in Chapter 3 yields the
following Fokker-Planck equation for the probability density W (p, q, t)
of p, q:

∂W

∂t
=

∂J1

∂q
+

∂J2

∂p
,

where (J1, J2) is the probability flux vector

J1 = −p
W

m
, J2 = KqW + ap

W

m
+ DWp.

This equation allows W = Z−1e−H/T as a stationary density provided
a = D/T , in agreement with the result above (in equation (6.4) the
coefficient a has already been divided by m).

6.2. A Coupled System of Harmonic Oscillators

In the previous section we considered a particle acted upon by noise;
the noise presumably represents an interaction with other particles, but
the properties of the interaction and the validity of its description as
noise were not considered. In this section we consider, in a simple case,
the interaction of a singled-out particle, the “tagged” or “resolved”
particle, with other particles in the framework of a Hamiltonian de-
scription of the entire system.

The particles are all in a one dimensional space; the resolved particle
is located at x, has velocity v, unit mass, and is acted on by a potential
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U(x). It interacts with n other particles, located at qj and having
momenta pj, with j = 1, ..., n. The Hamiltonian is

H =
1

2
v2 + U(x) +

1

2

∑
j

p2
j +

1

2

∑
j

f 2
j

(
qj − γj

f 2
j

x

)2

, (6.5)

where the fj and γj are constants. The γj are “coupling constants”,
and one can check that in the absence of interaction (i.e., if one sets the
coupling constants to zero) the fj would be the frequencies of oscillation
of the various particles. This Hamiltonian is quadratic (except for
the term in U) so that the equations of motion for the non-resolved
particles are linear; this is what makes the problem solvable explicitly.
The particles with linear equations of motion of the form implied in
this Hamiltonian for the unresolved particles are linear oscillators.

The equations of motion are

ẋ = v,

v̇ = −dU

dx
−

∑
j

γj

(
qj − γj

f 2
j

x

)
,

q̇j = pj,

ṗj = −f 2
j qj + γjx.

The equations of motion for the unresolved particles can be solved
explicitly:

qj(t) = qj(0) cos(fjt) + pj(0)
sin(fjt)

fj
+

γj

fj

∫ t

0

x(s) sin(fj(t− s)),

where qj(0) and pj(0) are initial conditions (about which nothing has
been said as yet). The integral term in this equation can be rewritten
after integration by parts as −γj

∫ t

0 v(s) cos(fj(t− s))/f2
j .

Collecting terms and inserting them into the equation for x and v
one finds:

ẋ(t) = v(t), v̇(t) = −U ′(x) +

∫ t

0

Kn(t− s)v(s)ds + Fn(t), (6.6)

where

Kn(t) = −
∑

j

γ2
j

f 2
j

cos(fjt),

and

Fn(t) =
∑

j

γj

(
qj(0)− γj

f 2
j

x(0)

)
cos(fjt) +

∑
j

pj(0)
sin(fjt)

fj
.
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Now suppose that the goal is to follow the motion of the resolved
particle (the one at x with velocity v) without following the motion of
all the others. Specific initial values qj(0), pj(0) cannot be take into
account. The best one can do is sample these initial values for the
unresolved particles from some acceptable density, which makes the
whole evolution stochastic. The first term on the right-hand side of
equation (6.6) is the effect of a potential which acts on the resolved
particle alone at the time t, and it has no analog in the Langevin
equations of the previous section. The second term on the right-hand-
side of equation (6.6) is analogous to the dissipation term −au in the
the previous Langevin equation, and represents not only dissipation but
also a memory, inasmuch as through this term the velocity at previous
times impacts the current velocity. That a reduced description of the
motion of the resolved variable involves a memory should be intuitively
obvious: suppose you have n > 3 billiard balls moving about on top of
a table and are trying to describe the motion of just three; the second
ball may strike the seventh ball at time t1 and the seventh ball may then
strike the third ball at a later time. The third ball then “remembers”
the state of the system at time t1, and if this memory is not encoded
in the explicit knowledge of where the seventh ball is at all times, then
it has to be encoded in some other way. The analog of this term in
the following sections will be called a “memory” term, to emphasize
the possibly unfamilar memory effect. The kernel of this integral term,
Kn, does not depend on the initial data and therefore this term is not
random.

The last term involves the random initial data and is a random func-
tion, analogous to the white noise in the previous Langevin equation.
Equation (6.6) generalizes the Langevin equation and we shall call this
last term the noise term, even though in general it is not white noise.
White noise can be expanded in terms of sines and cosines, but except
under very special conditions the coefficients in this expansion will not
be the ones in the expression for Fn above.

Finally, suppose the initial density W is W = Z−1e−H/T with H
given by equation (6.5). One can readily check that with this choice
E [pj(0)pk(0)] = Tδjk, where δjk is the Kronecker δ symbol. Also,

E

[(
qj(0)− γj

f 2
j

x(0)

) (
qk(0)− γk

f 2
k

x(0)

)]
= δjk

as well, where x(0) is the non-random initial value of x(t). With this
choice of initial W one can also check that:

E[fn(t)fn(t− t′)] = TKn(t− t′).
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This is the fluctuation/dissipation theorem relevant to the present
problem. It emerges simply as a consequence of the equations of motion
combined with the canonical choice of initial density.

It should be noted that the problem in this section is not an equi-
librium problem because the Hamiltonian depends on the variable x
and changes in time. As time advances the values of the variable x be-
come increasingly uncertain and the system “decays” to equilibrium;
this decay is represented by the memory and noise.

6.3. Mathematical Addenda

A pattern has emerged in the questions asked so far in the present
chapter: we consider problems with many variables where thermal equi-
librium has not been established, i.e., where there is no probability
density invariant in time. Such a density may be established in the fu-
ture of the systems under study, this fact has present consequences, but
there is no universal recipe for the evolution of the probability density
and no analog of an ergodic hypothesis to simplify calculations. What
one strives for is a reduced, practical description of key variables—the
analog of what was called renormalization in the equilibrium case. The
reduced equations we have derived replace those parts of the system
that are not fully described by a pair of matched terms, a stochastic
term that can be called “noise” and a damping, or “memory” term;
they have to be matched to preserve the possibility of future equilib-
rium; the matching conditions are called “fluctuation/dissipation the-
orems.” We now propose to derive these results in some generality;
however, before we can embark on this analysis, some mathematical
addenda are needed.

6.3.1. How to write a nonlinear system of ordinary differ-
ential equations as a linear partial differential equation. Con-
sider a system of ordinary differential equations

d

dt
φ(x, t) = R(φ(x, t)), φ(x, 0) = x, (6.7)

where R, φ, and x are (possibly infinite dimensional) vectors with com-
ponents Ri, φi, and xi.

We claim that this nonlinear system can be rewritten as a linear
partial differential equation. This is not an approximation, but an
exact representation; the cost of getting a linear system is the greater
conceptual and practical complexity of having to deal with a partial
differential equation.
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Define the Liouville operator (as in Chapter 5):

L =
∑

i

Ri(x)
∂

∂xi
.

It is not assumed here that the system (6.7) is Hamiltonian, so that the
coefficient functions in L are not derivatives of some H as in Chapter 5.
The variables in the coefficients and in the differentiations belong to a
space with as many dimensions as the space of initial data for (6.7).
Now form the differential equation

ut = Lu, (6.8)

with initial data u(x, 0) = g(x). This is also called a Liouville equa-
tion, though the sign of the right hand side is the opposite of the one
in front of the right hand side of the Liouville equation for the prob-
ability density in Chapter 5. The claim is that the solution of this
equation is u(x, t) = g(φ(x, t)), where φ(x, t) is the solution of the sys-
tem (6.7) with initial data x. If this is true, one can clearly solve the
partial differential equation (6.8) if one can solve the system of ordi-
nary differential equations; the ordinary differential equations (6.7) are
the characteristic equations of the partial differential equation (6.8).

First we prove the following useful identity:

R(φ(x, t)) = Dxφ(x, t)R(x). (6.9)

In this formula Dxφ(x, t) is the Jacobian of φ(x, t)

Dxjφi(x, t) =
∂φi

∂xj

and the multiplication on the right hand side is a matrix vector multipli-
cation; the left hand side is the vector R evaluated when the argument
is φ, while on the right the argument of R is x, the initial datum of φ;
φ is assumed to satisfy equations (6.7).

Define F (x, t) to be the difference of the left hand side and the right
hand side of (6.9)

F (x, t) = R(φ(x, t))−Dxφ(x, t)R(x).

Then at t = 0 we have

F (x, 0) = R(φ(x, 0))−Dxφ(x, 0)R(x)

= R(x)−Dx(x)R(x)

= R(x)− IR(x)

= 0. (6.10)
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Differentiating F with respect to t we get

∂

∂t
F (x, t) =

∂

∂t
R(φ(x, t))− ∂

∂t
(Dxφ(x, t)R(x))

=
∂

∂t
R(φ(x, t))− ∂

∂t
(Dxφ(x, t)) R(x)

= (DxR)(φ(x, t))
∂

∂t
φ(x, t)−Dx

(
∂

∂t
φ(x, t)

)
R(x)

= (DxR)(φ(x, t))
∂

∂t
φ(x, t)−Dx(R(φ(x, t)))R(x)

= (DxR)(φ(x, t))R(φ(x, t))− (DxR)(φ(x, t))Dxφ(x, t)R(x)

= (DxR)(φ(x, t)) (R(φ(x, t))−Dxφ(x, t)R(x))

= (DxR)(φ(x, t))F (x, t). (6.11)

From (6.10) and (6.11) one can conclude that F (x, t) ≡ 0. Indeed, the
initial value problem defined by (6.10) and (6.11) has a unique solution
given that R and φ are smooth. Since F (x, t) = 0 solves this problem
we have proved (6.9).

Take an arbitrary smooth function g(x) on Γ and form the function

u(x, t) = g(φ(x, t)).

Clearly u(x, 0) = g(x). Differentiate this function with respect to t
using the chain rule

∂u

∂t
=

∑
i

∂g(φ(x, t))

∂xi

∂φi(x, t)

∂t
=

∑
i

Ri(φ(x, t))
∂g(φ(x, t))

∂xi
.

Using the formula (6.9) this last expression becomes∑
i

(∑
j

∂φi(x, t)

∂xj
Rj(x)

)
∂g(φ(x, t))

∂xi

=
∑

j

Rj(x)

(∑
i

∂g(φ(x, t))

∂xi

)
∂φi(x, t)

∂xj
=

∑
j

Rj(x)
∂g(x, t)

∂xj
= Lu.

(6.12)

Hence u(x, t) = g(φ(x, t)) is the (unique) solution of the equation

ut = Lu, u(x, 0) = g(x). (6.13)

Clearly, if one can solve the system (6.7) for all x one can solve the Li-
ouville equation (6.13) for any initial datum g. Conversely, suppose one
can solve the Liouville equation for all initial data g; pick g(x) = xj; the
solution of the Liouville equation is then φj(x, t), the j-th component
of the solution of the system of ordinary differential equations (6.7).
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If L is skew-symmetric, the equation for the probability density in
Chapter 5 and the Liouville equation here which is equivalent to the
original system differ by a sign. By judicious insertions of factors of
complex i one can get the two Liouville equations to be adjoint; the
two equations are then related like the Schroedinger and Heisenberg
representations in quantum mechanics.

6.3.2. More on the semigroup notation. In Chapter 3 we
introduced the semigroup notation, according to which the solution
of (6.13) is denoted by etLg; the time dependence is explicitly marked,
and the value of this solution at a point x is denoted by etLx. with
this notation the formula for the solution u(x, t) = u(φ(x, t)) of (6.13)
becomes:

etLg(x) = g(etLx). (6.14)

Note that etLx is not etL evaluated at x but etL acting on the vector
whose components are the functions xi; the time propagation of a func-
tion g commutes with the time propagation of the initial conditions xi.
Equation (6.12) becomes simply

LetL = etLL. (6.15)

The analogous formula for matrices is of course obvious.
Consider the differential equation ut = Au + Bu, where A and B

are operators and u is a function of x and t. The solution of ut = Au,
u(0) = u0 is u(t) = etAu0; to solve ut = Au + Bu use the method
of variation of constants: Let u = wetLu0, and substitute into the
equation; a short manipulation yields:

u(t) = etLu0 +

∫ t

0

u(t− s)BesAu0 ds,

(where the argument x is not explicitly written) or

et(A+B) = etA +

∫ t

0

e(t−s)(A+B)BesAds.

This formula is often called the “Duhamel formula” or, in physics, the
“Dyson formula.” If the operators are finite dimensional the formula
can be checked by even more elementary means.

6.3.3. Hermite polynomials and projections. The polynomi-
als orthonormal with respect to the inner product

(u, v) =

∫ +∞

−∞

e−x2/2

√
2π

u(x)v(x)dx
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are called the Hermite polynomials. One can generalize them to spaces
with more dimensions: If one defines the inner product

(u, v) =

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
(2π)−n/2 e−(

P
x2

i )/2u(x)v(x)dx1 · · · dxn,

then one finds that the following polynomials form an orthonormal
family: First the constant polynomial 1; then the n linear monomi-
als x1, x2, . . . , xn; then the polynomials of degree 2: H2(x1) = xixj

for i &= j, etc. More generally, if H(q, p) is a Hamiltonian, one can
define a family of polynomials in the variables q, p that are orthonor-
mal with respect to the canonical density Z−1e−H/T . We shall still call
these polynomials “Hermite polynomials”, and we shall do the same
for polynomials orthonormal with respect to an inner product with a
weight W .

Consider an n-dimensional space Γ with a probability density W .
Divide the coordinates into two groups, x̂ and x̃. Let g be a function
of x; then Pg = E[g|x̂] is an orthogonal projection onto the subspace
of functions of x̂. One can perform this projection by spanning that
subspace by those Hermite polynomials that are functions of x̂ and us-
ing them as in Chapter 1. One can then approximate the “conditional
expectation” projection by a “finite-rank” projection in which one uses
only a fixed set of Hermite polynomials. A particular finite rank pro-
jection widely used in physics is the one in which only the Hermite
polynomials of degree one are used; this is also known as the “linear”
projection (as if other projections were not linear). We have already
used a linear projection implicitly in the “linear” prediction method in
Chapter 4.

6.4. The Mori-Zwanzig formalism

Return now to the system

dφi(x, t)

dt
= R(φ(x, t)), φi(x, 0) = xi, 1 ≤ i ≤ n. (6.16)

Suppose one is interested only in the first m variables φ1, . . . , φm, with
m < n; partition the vector φ as in Chapter 5 into “resolved” variables
φ̂ and “unresolved” variables φ̃ so that

φ = (φ̂, φ̃), φ̂ = (φ1, . . . , φm), φ̃ = (φm+1, . . . , φn),

and similarly x = (x̂, x̃) and R = (R̂, R̃). We now look for equations for
the components φ̂(t) with the initial conditions φ̂(0) = x̂. We further
assume that at time t = 0 we know the joint pdf of all the variables
x; once the initial data x̂ are given, the pdf of the variables in x̃ is



118 6. TIME-DEPENDENT STATISTICAL MECHANICS

the joint pdf of all the x variables conditioned by x̂. Something has
to be assumed about the missing variables x̃ less the problem become
meaningless; the assumptions here are often realistic, but one should
be careful not to use what is now coming when these assumptions do
not hold.

Form the Liouville equation ut = Lu as above; the components φ̂
are φ̂j(x, t) = etLxj (note that φ̂j depends on all the data x when the
system is not linear; if x̃ is random, φ̂ is random as well). By definition,

∂

∂t
etLxj = LetLxj = etLLxj, (6.17)

where the last equality is the commutation rule (6.15). Let P be the
conditional expectation projection Pg(x) = E[g|x̂], where the proba-
bility density is the assumed density for the initial conditions. We shall
use the same notation even when we later approximate the conditional
expectation by a finite-rank projection. The “conditioning variables”
(in terms of which Pg will be expressed) here are the initial data, rather
than the current values of φ̂ as in the renormalization analysis in Chap-
ter 5; this must be so because we are assuming that some of the initial
values are known and therefore the initial density is not invariant even
when the system is Hamiltonian (and we are not assuming that the
system (6.7) is Hamiltonian). Without an invariant measure there is
no good way to determine the P of Chapter 5 thus our P here is not the
same as that in Chapter 5. Note also that the P here is a projection
on a space of functions of a fixed set of variables and is therefore time-
independent. Furthermore, objects such as Pφ̂(t) = E[φ̂(t)|x̂] are of
great interest: they are the best estimates of the future values of a re-
duced system of variables given partial information about the present.
This is the kind of thing a meteorologist, for example, wants to cal-
culate: a best prediction of a set of interesting features of the future
weather given our limited information about the present state of the
atmosphere.

Define furthermore Q = I −P and keep in mind that P2 = P, Q2 =
Q, and PQ = 0 as must be true for any projection. Equation (6.17)
can be rewritten as

∂

∂t
etLxj = etLPLxj + etLQLxj. (6.18)

Consider the first term. We have

Lxj =
∑

i

Ri(∂/∂xi)xj = Rj(x);
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and so PLxj = E[Rjx|x̂] = R̄j(x̂) is a function of the reduced set of
variables x̂, the average of the initial data conditioned by the partial
knowledge embodied in x̂; etLPLxj = R̄j(φ̂(x, t)) by the commutation
rule (6.14). If one replaces the projection used here by the projection of
Chapter 5 one finds that equation (6.18) coincides with the equation we
used to renormalize in Chapter 5 provided Q = 0; but Q &= 0 unless φ̂
coincides with φ which explains why the “equilibrium” renormalization
of Chapter 5 has to be reformulated here before one can deal with time
dependent statistics.

We now split the second term in equation (6.18) using Dyson’s
formula with A = QL and B = PL (the reasons for the split will
emerge soon)

etL = etQL +

∫ t

0

e(t−s)LPLesQLds. (6.19)

Here the linearity of the Liouville equation is being used–this step is
the motivation for the introuction of that equation into the analysis.
Using (6.19), equation (6.18) becomes

∂

∂t
etLxj = etLPLxj + etQLQLxj +

∫ t

0

e(t−s)LPLesQLQLxjds. (6.20)

This is the Mori-Zwanzig equation. This equation is exact and is an
alternative way of writing the original system (6.16). It is an equation
for each one of the φj(x, t) = etLxj, j = 1, . . . ,m.

Now examine the different terms that appear in the right hand side
of (6.20). The first term is a function only of φ̂(x, t) and represents
the self-interaction of the resolved variables; it is a Markovian term,
inasmuch as it is evaluated at the same time t as the left hand side of
the equation.

To decode the second term, write

etQLQLxj = wj.

The function wj(x, t) satisfies by definition the equation

∂

∂t
wj(x, t) = QLwj(x, t)

wj(x, 0) = QLxj = (I − P)Rj(x) = Rj(x)− R̄j(x̂).
(6.21)

If one identifies PLxj as the “average of the initial data” then wj(x, 0)
is a “fluctuating part of the initial data” (according the often used
terminology in which a “fluctuating part” of a random variable η is
η − E[η]). Obviously, Pwj(x, 0) = 0. If one took this initial function
and applied the operator etL to it (i.e., solved the Liouville equation
starting from this initial function), the result would in general have a
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non-trivial mean part (one not in the null-space of P); the evolution
equation for wj removes the “mean part” at each instant of time. As
a result, Pwj(x, t) = 0 for all time t.

Call the space of functions of x̂ the “resolved subspace” and its
orthogonal complement (with respect to the inner product defined by
the initial density) the “noise subspace.” P applied to any element of
the noise subspace gives zero, and similarly Q applied to any element
of the resolved subspace gives zero. The functions wj(x, t) = etQQLxj

are in the noise space; we shall call the vector of which they are the
components the “noise” for short. The noise is determined by the initial
data and by the system (6.16) and does not have to be white noise.
Equation (6.21) is the “orthogonal dynamics” equation.

The third term in equation (6.20) is the “memory” term because
it involves integration of quantities which depend on the state of the
system at earlier times. To see what this term does, approximate the
projection P by a finite rank projection in terms of Hermite polynomials
(H1, . . . , Hp) (whose arguments belong to x̂). We have

PLesQLQLxj = PL(P + Q)esQLQLxj

= PLQesQLQLxj

=
p∑

k=1

(LQesQLQLxj, Hk(x̂))Hk(x̂).

To simplify the analysis, assume that L is skew symmetric, (u, Lv) =
−(Lu, v); we have seen that this includes the case where the sys-
tem (6.16) we started from was Hamiltonian. Then we find:

(LQesQLQLxj, Hk(x̂) = −(QesQLQLxj, LHk)

= −(esQLQLxj, QLHk).

Both QLxj and QLHk are in the noise subspace, and esQLQLxj is a
solution at time s of the orthogonal dynamics equation with data in the
noise subspace; PLesQLQLxj is then a sum of temporal covariance of
“noises,” i.e., of functions in the noise subspace. The operator e(t−s)L

commutes with each (LQesQLQLxj, Hk(x̂)) because the latter expres-
sion is an inner product which does not evolve in time, and by the
rule (6.14) one finds e(t−s)Hkx̂ = Hkφ̂(t− s); if one makes the change
of variables t′ = t− s and drops the prime, one finds that the memory
integral is a sum of time covariances of noises with time difference s
multiplying variables that describe the state of the system at time s.
The split (6.19) was introduced so as to divide the non-Markovian term
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in the equation of motion for the φ̂ into a noise and a memory that
depends on the temporal covariances of noise.

One can bring in an apparent simplification by multiplying equa-
tion (6.20) by the projection P; remember that P is time invariant,
so that P(∂/∂t)φ̂ becomes (∂/∂t)E[φ̂|x̂]—a quantity of some interest.
Using the fact that P operating on the noise term is zero yields

∂

∂t
PetLxj = PetLPLxj +

∫ t

0

Pe(t−s)LPLesQLQLxjds. (6.22)

where PetLxj = E[φ̂(x, t)|x̂] by definition. However, the Markovian
term is now more complicated: we have seen that etLPLxj is in general
a nonlinear function R̄(φ̂(t)); however, PR̄(φ̂(t)) is in general not equal
to R̄(Pφ̂(t)) and some approximation scheme must be devised.

To make contact with earlier work, one has to make some dras-
tic simplifications. Assume that the “linear” projection will do the job
(this is generally true if the processes φ have small amplitude). Suppose
that the initial probability density W is such that E[xixj] = (xi, xj) =
δij. Assume that the noise etQLQLxj is white noise (occasionally this
is a good assumption, see the next few sections). Then the correlations
which appear in the integrand of the memory term are delta functions
and in this case the memory term has no memory. With some further
assumptions about the original equations (6.16) one recovers as special
cases the systems of the first two sections of this chapter. Thus equa-
tions (6.20) are general Langevin equations, generalizing what we have
earlier called the Langevin equation. Fluctuation/dissipation relations
follow automatically.

These expressions are exact. If one has a system of equations for
φ, a pdf for the initial data, specific initial data for φ̂(t = 0), and one
wants to find φ̂(t), one can either sample the whole vector of initial
data, solve for φ(t), and throw away all that is not φ̂, or one can solve
equations (6.20). One can average in either case. Equations (6.20)
are fewer in number but this advantage is outweighed by the need to
know the noise and the covariance functions. What equations (6.20)
do provide is a starting point for approximation.

What are such approximations needed for ? There are two settings
in which they can be useful:

(1) The analysis of how large mechanical systems converge to the
kind of equilibrium discussed in the previous Chapter. If one
sets the values of some initial data to fixed values but lets the
other initial values be picked at random from a canonical den-
sity, one in fact takes the mechanical system out of equilibrium
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at time t = 0. An ergodic Hamiltonian system will then see
its entropy increase and it will tend towards equilibrium; it is
often of interest to see how this happens and this can in princi-
ple be done by approximating equation (6.20) that correspond
to the dynamics of the system.

(2) Suppose one wants to make predictions on the basis of partial
data (as for example in weather forecasting). One can as-
sume something reasonable about the missing information, for
example on the basis of previous experience, and turn to equa-
tions (6.20). Prediction methods based on the Mori-Zwanzig
formalism also go under the name “optimal prediction.”

Finally, some words on the long-time behavior of the solutions
of (6.20). Suppose the system (6.16) is Hamiltonian and ergodic. If
the initial data are non-equilibrium data (not sampled from a canonical
density, for example some of them are given numbers x̂), then as time
unfolds the system will approach equilibirum (i.e., the joint density of
the φ(t) will approach a canonical density as the entropy increases).
The averages Pφ(t) = E[φ|x̂] will converge to the averages of φ with
respect to the canonical density—the predictive power of initial data
decays to zero with time (for example, one can make decent one-day
weather forecasts on the basis of today’s observations, but very poor
one-year forecasts). The solutions of the equation for Pφ̂(t) tend to
constants (usually zero) independent of the data. The Markovian term
in equation (6.20) tends to zero as well, and one is left with an equation
that merely balances noise and memory.

6.5. Scale Separation and Weak Coupling

There are situations where one knows that the noise term in the
Mori-Zwanzig equations can be approximated by white noise, and then
the memory term becomes local in time and everything is simpler. This
happens in particular when there is scale separation between the re-
solved and unresolved variables. This means that there is a significant
gap between the frequencies of the resolved components φ̂ and the fre-
quencies of the unresolved components φ̃. The heuristic reason is clear:
if the resolved variables take a time ∆t to vary significantly, during this
time interval the unresolved variables make many uncorrelated contri-
butions to the motion of the resolved variables, whose effect can be
described by a sum of independent Gaussian variables (by the central
limit theorem) and hence summarized as the effect of a white noise. A
closely related situation is that of “weak coupling”, where the varia-
tions of φ̃ affect φ̂ by a small amount; it takes many of them to have a
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significant effect and their cumulative effect is that of a large number
of independent contributions. The detailed description of these situa-
tions requires asymptotic solutions of a singular pertubation problems,
as we illustrate by an example.

Consider a particle at a point x whose velocity v can be either +1
or −1; it jumps from one value to the other in every short time interval
dt with a probability dt, with independent probabilities for a jump on
two disjoint intervals. Let the position x of the particle be given by

ẋ = εv(t),

or

x(t) = ε

∫ t

0

v(s)ds.

The presence of the parameter ε, which will soon be made small, em-
bodies a weak coupling assumption. The variable x is analogous to a
resolved variable; for simplicity we present a model in which the unre-
solved, “fast”, variable v is not determined by an equation but rather
by fiat.

The probability density function W (x,±1, t) is the probability that
the particle be between x and x + dx while v is either +1 or −1. It
can be thought of as a vector W = (W+, W−), where W+(x, t) is the
probability that the particle be between x and x+dx with v = +1 with
a similar definition for W−. W+(x, t+δt) equals (1−δt) (the probability
that there is no change in velocity) times W (x− δt) (because particles
moving at speed 1 go from x− δt to x in a time δt), minus δtW+(x, t)
(the probability of loss of particles to the W− branch times the density),
plus δtW−(x, t) (because of jumps from the minus state). Collecting
terms, expanding W (x − δt), dividing by δt and letting δt → 0, as in
Chapter 3, yields,

W+
t = −W+

x + W− −W+,

and similarly,
W−

t = W−
x + W+ −W−,

where the subscripts x, t denote differentiation. Define

U = W+ −W−, V = W+ + W−

one finds
Ut = εUx − 2Vt, Vt = −U,

and hence,
Utt = εUxx − 2Ut.

Once U is found V , W+, and W− follow immediately.
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One does not expect, with the weak coupling when ε is small, to
have a significant displacement x of a particle when t is of order 1. We
therefore introduce a slow time scale such that, when a unit time has
passed on this slower scale, one can expect a significant displacement
to have occurred; we do this by setting τ = ε2t; the equation for U =
U(x, τ) becomes

εUττ = Uxx − 2Uτ ,

and, in the limit ε → 0, we obtain Uτ = 1
2Uxx, a heat equation which

can be solved by examining particles undergoing BMs, as promised.
This is of course just a reflection of the fact that by the central limit
theorem the sum of the independent contributions to x due to the
assumed velocity adds up over time to a Gaussian variable.

Similarly, one can see that a heavy particle bombarded by lighter
particles undergoes a displacement which, over the proper time scales,
satisfies the Langevin equation as written in the first section of this
chapter. The ratio of masses provides the needed ε.

6.6. Non-Instantaneous Memory

In the previous section we considered situations where the memory
could be viewed as having zero range, i.e., where the covariances which
appear in the Mori-Zwanzig identity can be viewed as δ functions. We
now consider problems where the memory, while still short, has non-
zero support (i.e., it has a non-negligible amplitude within an interval
of time of non-zero length).

The approximation we shall examine is some detail is

etQL ∼= etL, (6.23)

and we consider under what conditions this is a reasonable ansatz. We
pick this particular ansatz for analysis because the resulting analysis is
reasonably illuminating. First note that this is a weak coupling anzatz.
It is an identity in those cases where the resolved and unresolved vari-
ables do not interact, in which case the noise subspace and the resolved
subspace evolve separately and there is not need to reproject the noise
by Q to generate etQL.

The memory term in the Mori-Zwanzig equations (6.20) can be
rewritten as∫ t

0

e(t−s)LPLesQLQLxj ds =

∫ t

0

e(t−s)LPLQesQLQLxj ds,

where the insertion of the extra Q is legitimate since esQL maps func-
tions in the null space of P back into the same subspace. Adding and
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subtracting equal quantities, we find

PLesQLQLxj = PLQesLQLxj + PLQ(esQL − esL)QLxj.

A Taylor series yields

esQL − esL = I + sQL + · · · − I − sL− · · · = −sPL + O(s2),

and therefore, using QP = 0, we find:∫ t

0

e(t−s)LPLesQLQLxj ds =

∫ t

0

e(t−s)LPLQesLQLxj ds + O(t3).

If P is a finite rank projection then

PLesQLQLxj =
∑

k

(QLesQLQLxj, Hk)Hk(x̂)

where, as before, one can write

(QLesQLQLxj, Hk) = −(esQLQLxj, QLHk)

when L is skew-symmetric. If the correlations (esQLQLxj, QLHk) and
(esLQLxj, QLHk) are significant only over short times s, the approxi-
mation (6.23) provides an acceptable approximation without requiring
the solution of the orthogonal dynamics equation. This is still a short-
correlation time approximation but no longer a δ-function approxima-
tion for the correlations.

One way of using the ansatz (6.23) is as follows: rewrite the memory
term as∫ t

0

e(t−s)LPLesQLQRj(x)ds =

∫ t

0

Le(t−s)LesQLQRj(x)ds

−
∫ t

0

e(t−s)LesQLQLQRj(x)ds,

where we have used the commutation of L and QL with etL and etQL

respectively. At this point, make the approximation (6.23) and replace
the evolution operator of the orthogonal dynamics by the evolution
operator of the Liouville equation. The dependence on s in the inte-
grands disappears and all one is left with is the factor t multiplying
a function of the instantaneous values of φ̂ equal to etLLQLxj. All
that remains of the integration in time is the coefficient t. One can get
rid of the noise term by premultiplying the equations by a projection
P, as in equation (6.22), and obtain a reduced non-autonomous set of
differential equations.
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As an example, consider the Hald model, which is a system of two
linear oscillators with a nonlinear coupling, whose Hamiltonian is

H(φ) =
1

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4 + φ2

1φ
2
3

)
,

with (φ1, φ2) and (φ3, φ4) canonical pairs of coordinates. The resulting
equations of motion are:

d

dt
φ1 = φ2,

d

dt
φ2 = −φ1(1 + φ2

3)

d

dt
φ3 = φ4,

d

dt
φ4 = −φ3(1 + φ2

1).

Suppose one wants to solve only for φ̂ = (φ1, φ2), with initial data
x̂ = (x1, x2). Assume the initial data (x3, x4) are sampled from a
canonical density with temperature T = 1. A quick calculation yields

E[x2
3|x1, x2] =

1

1 + x2
1

.

The advance in time described by the multiplication by etL requires
just the substitution x̂ → φ̂. If one commutes the nonlinear function
evaluation and the conditioanl averaging, i.e., writes Pf(φ̂) = f(Pφ̂)
(this is a “mean-field approximation”), and writes furthemore

Φ(t) = Pφ̂ = E[φ̂|x̂]

one finds

PetLPLx1 = Φ2, PetLPLx2 = −Φ1

(
1 +

1

1 + Φ2
2

)
.

One can calculate PetLLQLxj for j = 1, 2 and find

d

dt
Φ1 = Φ2,

d

dt
Φ2 = −Φ1

(
1 +

1

1 + Φ2
1

)
− 2t

Φ2
1Φ2

(1 + Φ2
1)

2
.

The last term represents the damping due to the loss of predictive
power of partial data; the coefficient of the last term increases in time
and one may worry that this last term eventually overpowers the equa-
tions and leads to some odd behavior. This is not the case. Indeed,
one can prove the following: If the system (6.16) one starts from is
Hamiltonian with Hamiltonian H, and if the initial data are sampled
from an initial canonical density conditioned by partial data x̂, and if
Ĥ is the renormalized Hamiltonian (in the sense of Chapter 5), then
(d/dt)Ĥ ≤ 0, showing that the components of φ̂ decay as they should.
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The proof requires a minor technical assumption (that the Hamiltonian
H can be written as the sum of a function of p and a function of q, a
condition commonly satisfied) and we omit it.

There are other ever more sophisticated ways of improving pre-
dictions when memory is short. However, in most real-life problems
without a marked separation of scales memory is long, indeed often
very long. It has been known for a long time that the covariance
functions in many important problems decay very slowly; the covari-
ance functions encountered in the Mori-Zwanzig algorithm converge
to the covariance functions of the full problem with data drawn from
the canonical density as the number of resolved variables decreases
and they are also typically long-range in time. The challenge is to de-
vise ways to approximate the Mori-Zwanzig equations under these very
common circumstances.

One approach is as follows: As the time t increases, the covariance
functions in the equations converge to the covariance functions for the
problem without data (that is, m = 0, x̂ empty). These latter covari-
ance functions, for a given set of equations, can be determined once
and for all by Monte-Carlo computation. If one has to solve a fixed set
of equations over and over with different data, the computational over-
head in the evaluation of these covariances can be justified, and then
these covariance functions can be used to approximate the equations
in many particular cases. The analysis of such algorithms is beyond
the scope of these notes.
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